Supermassive Black Holes at high redshidft

Marco Ajello Vaidehi Paliya, John Tomsick on behalf of GammaSig

Clemson University

Blazars

Blazar Population

- * The more luminous blazars have a IC peak at <<100 MeV
- * We refer to these class as MeV blazars

MeV Blazars

- Among most powerful persistent objects in the Universe
- * Large jet power, easily larger than accretion luminosity
 - * BH spin may be important
- * Host massive black holes, near 1 billion solar masses (or more)
- * They are detected up to very high redshift (Ajello et al. 2009)

Paliya+17

This population is not well understood, yet very important

Favorable selection effect

High-redshift blazars preferentially host massive black holes

Black hole growth

Evolution of MeV blazars

* Evolution of MeV blazars is stronger than any other source class: i.e. their maximum density may be very

early on

Clear that the radio-loud phase may play a very important role in the growing of massive black holes

Constraining the number density of extremely massive black holes in radio-loud systems is the easiest with blazars (via $2\Gamma^2$ correction)

What can they tell us?

- * The shape of the hard X-ray spectrum constrains the bulk Lorentz factor and the viewing angle of the jet
- * NuSTAR has helped in finding a few of them
- More the number of blazars hosting massive black holes beyond z=4-5, more problems for BH formation theories:)

Sbarrato+, 2013, ApJ, 777, 143

High-redshift blazars can pinpoint to BH formation mechanisms

* Lack of strong absorption, in the LAT energy range, due to UV BLR photons, places the emission region beyond the BLR (Costamante+18)

Emission Region

* Peak location and variability timescale will pinpoint the location of the emission region (BLR vs Torus)

MeV Background

* MeV blazars may be responsible for the MeV background (Ajello+09) However see Inoue, Ruiz-LaPuente etc

Current Status

- MeV blazars are hard to detect despite being bright!
 - * lack of an MeV mission
- Bright in X-rays
 - tens detected by Swift/BAT (Ajello +09)
 - * a few discovered (via follow up) with NuSTAR (Ghisellini, Sbarrato etc)

Current Status

- MeV blazars are hard to detect despite being bright!
 - lack of an MeV mission
- Bright in X-rays
 - tens detected by Swift/BAT (Ajello +09)
 - a few discovered (via follow up) with NuSTAR (Ghisellini, Sbarrato etc),
 Fermi-LAT (Ackermann+17)

Prospects of detection with AMEGO

How many MeV blazars can be detected?

* >100 blazars at z>3

two extrapolations of blazar LF from Swift/BAT (Ajello et al. 2009)

L	Z	N(>z)	N(>z)
	3	199	102
	4	154	57
	5	76	5
	6	24	0
	7	9	0
	8	3	0

PLE Evolution (A09) up to high z.

PLE Evolution (A09) to z~4 + high z exponential cutoff at z>4.

Summary

- * An MeV mission (like AMEGO) may detect hundreds of MeV blazars up to z~5 and maybe beyond
 - * SMBH growth
 - Disk-jet connection
 - Location of emission region and emission mechanism (EC-BLR/Torus)
 - MeV background

How to grow quickly a black hole

Credit: HST image

What can they tell us?

* 10⁵ black hole formation from the collapse of a massive turbulent disk produced by a merger (Mayer+10, Nature)

What can they tell us?

- * 10⁵ black hole formation from the collapse of a massive turbulent disk produced by a merger (Mayer+10, Nature)
- * Fraction of major mergers that satisfy conditions to form heavy BH seeds steadily increases from z>2

MeV blazars can pinpoint to BH formation mechanisms

* Improved low-energy response (with P8) allowed Fermi-LAT to detect 5 z>3.1 blazars (Ackermann+17)

- * All are objects with $M_{BH} > 10^{8-9} M_{sun}$
- * All have Γ~13-15
 - * every single blazars implies $2\Gamma^2$ objects pointing somewhere else!

- Between redshift 3 and 4 we have 2 blazars with M_{BH}>10⁹ M_●
 - They account for \sim 675 more objects at the same redshift
- Only 5 system were known before
 - Brings up the space density estimate by 40%!

- Despite the good news, they still remain very hard to detect in Fermi
- * These objects are bright! but extremely soft, so their photons are spread everywhere
- Population of MeV blazars could be large

Favorable selection effect

γ-ray quiet are MeV blazars

high-z are MeV blazars

γ-ray undetected

